Ir al contenido

Documat


The radial masa in a free group factor is maximal injective

  • Autores: Jan Cameron, Junsheng Fang
  • Localización: Journal of the London Mathematical Society, ISSN 0024-6107, Vol. 82, Nº 3, 2010, págs. 787-809
  • Idioma: inglés
  • DOI: 10.1112/jlms/jdq052
  • Enlaces
  • Resumen
    • The radial (or Laplacian) masa in a free group factor is the abelian von Neumann algebra generated by the sum of the generators (of the free group) and their inverses. The main result of this paper is that the radial masa is a maximal injective von Neumann subalgebra of a free group factor. We also investigate the tensor products of maximal injective algebras. Given two inclusions Bi �¼ Mi of type I von Neumann algebras in finite von Neumann algebras such that each Bi is maximal injective in Mi, we show that the tensor product B1.B2 is maximal injective in M1.M2 provided at least one of the inclusions satisfies the asymptotic orthogonality property we establish for the radial masa. In particular, it follows that finite tensor products of generator and radial masas will be maximal injective in the corresponding tensor product of free group factors.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno