Ir al contenido

Documat


Indices of the iterates of R3-homeomorphisms at fixed points which are isolated invariant sets

  • Autores: Patrice Le Calvez, Francisco Romero Ruiz del Portal Árbol académico, José M. Salazar
  • Localización: Journal of the London Mathematical Society, ISSN 0024-6107, Vol. 82, Nº 3, 2010, págs. 663-696
  • Idioma: inglés
  • DOI: 10.1112/jlms/jdq050
  • Enlaces
  • Resumen
    • Let U �¼ R3 be an open set and f : U �¨ f(U) �¼ R3 be a homeomorphism. Let p �¸ U be a fixed point. It is known that if {p} is not an isolated invariant set, then the sequence of the fixedpoint indices of the iterates of f at p, (i(fn, p))n1, is, in general, unbounded. The main goal of this paper is to show that when {p} is an isolated invariant set, the sequence (i(fn, p))n1 is periodic. Conversely, we show that, for any periodic sequence of integers (In)n1 satisfying Dold�fs necessary congruences, there exists an orientation-preserving homeomorphism such that i(fn, p) = In for every n  1. Finally we also present an application to the study of the local structure of the stable/unstable sets at p.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno