Ir al contenido

Documat


Outer commutator words are uniformly concise

  • Autores: Gustavo Adolfo Fernández Alcober Árbol académico, Marta Morigi
  • Localización: Journal of the London Mathematical Society, ISSN 0024-6107, Vol. 82, Nº 3, 2010, págs. 581-595
  • Idioma: inglés
  • DOI: 10.1112/jlms/jdq047
  • Enlaces
  • Resumen
    • We prove that outer commutator words are uniformly concise, that is, if an outer commutator word ù takes m different values in a group G, then the order of the verbal subgroup ù(G) is bounded by a function depending only on m, and not on ù or G. This is obtained as a consequence of a structure theorem for the subgroup ù(G), which is valid if G is soluble, and without assuming that ù takes finitely many values in G. More precisely, there is an abelian series of ù(G), such that every section of the series can be generated by values of ù all of whose powers are also values of ù in that section. For the proof of this latter result, we introduce a new representation of outer commutator words by means of binary trees, and we use the structure of the trees to set up an appropriate induction.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno