Ir al contenido

Documat


Continuous linear extension of functions

  • Autores: Akira Koyama, I. Stasyuk, Edward D. Tymchatyn, Andriy Zagorodnyuk
  • Localización: Proceedings of the American Mathematical Society, ISSN 0002-9939, Vol. 138, Nº 11, 2010, págs. 4149-4155
  • Idioma: inglés
  • DOI: 10.1090/s0002-9939-2010-10424-0
  • Enlaces
  • Resumen
    • Let be a complete metric space. We prove that there is a continuous, linear, regular extension operator from the space of all partial, continuous, real-valued, bounded functions with closed, bounded domains in to the space of all continuous, bounded, real-valued functions on with the topology of uniform convergence on compact sets. This is a variant of a result of Kunzi and Shapiro for continuous functions with compact, variable domains.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno