Ir al contenido

Documat


Lojasiewicz inequality for weighted homogeneous polynomial with isolated singularity

  • Autores: Shengli Tan, Stephen Yau, Huaiqing Zuo
  • Localización: Proceedings of the American Mathematical Society, ISSN 0002-9939, Vol. 138, Nº 11, 2010, págs. 3975-3984
  • Idioma: inglés
  • DOI: 10.1090/s0002-9939-2010-10387-8
  • Enlaces
  • Resumen
    • Let be a real continuous function on an interval, and consider the operator function defined for Hermitian operators . We will show that if is increasing w.r.t. the operator order, then for the operator function is convex. Let and be functions defined on an interval . Suppose is non-decreasing and is increasing. Then we will define the continuous kernel function by , which is a generalization of the Löwner kernel function. We will see that it is positive definite if and only if whenever for Hermitian operators , and we give a method to construct a large number of infinitely divisible kernel functions.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno