Ir al contenido

Documat


A tool for locating zeros of orthogonal polynomials in Sobolev inner product spaces

  • Autores: Marcel G. de Bruin
  • Localización: Journal of computational and applied mathematics, ISSN 0377-0427, Nº 1, 1993, pág. 27
  • Idioma: inglés
  • DOI: 10.1016/0377-0427(93)90131-t
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In the theory of polynomials orthogonal with respect to an inner product of the form 〈f,〉 = ∫∞0f(x)g(x)dψ(x)+Σmk=1Akf(ik)(0)g(ik)(0), one is confronted with the following situation: for certain values of the parameters, the orthogonal polynomial of degree n does not have all its zeros inside the support of the distribution function dψ. This paper gives a method to investigate the zero distribution by looking at a type of limiting polynomial. For the case m = 2 it is shown that there are exactly two zeros outside the true interval of orthogonality for A1,A2 large; moreover, it is proved that these zeros are nonreal (complex conjugates) in the case i1 + 1 = i2. Also several examples are given.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno