Ir al contenido

Documat


The spiral index of knots

  • Autores: Colin Adams, Rachel Hudson, Ralph Morrison, William George, Laura Starkston, Samuel J. Taylor, Olga Turanova
  • Localización: Mathematical proceedings of the Cambridge Philosophical Society, ISSN 0305-0041, Vol. 149, Nº 2, 2010, págs. 297-315
  • Idioma: inglés
  • DOI: 10.1017/s0305004110000241
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In this paper, we introduce two new invariants that are closely related to Milnor's curvature-torsion invariant. The first, a particularly natural invariant called the spiral index of a knot, captures the number of local maxima in a knot projection that is free of inflection points. This invariant is sandwiched between the bridge and braid index of a knot, and captures more subtle properties. The second invariant, the projective superbridge index, provides a method of counting the greatest number of local maxima that occur in a given projection. In addition to investigating the relationships among these invariants, we use them to classify all those knots for which Milnor's curvature-torsion invariant is 6p.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno