Let $\{\A_\la\}_{\la \in \La}$ be a family of algebras of sets defined on a set $X, 0 < \# (\La) \leq \aleph_0$, and $\A_\la \neq \P(X)$ for each $\la \in \La$. We assume that $\A_\la$ are $\sigma$-algebras if $\# (\La) = \aleph_0$. We obtained the necessary and sufficient conditions for which $\bigcup_{\la \in \La} \A_\la = \P(X)$. In the formulation of these conditions we use $\omega$-saturated algebras and finite sequences of ultrafilters on $X$.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados