Ir al contenido

Documat


On some generalizations of Newton non-degeneracy for hypersurface singularities

  • Autores: Dmitry Kerner
  • Localización: Journal of the London Mathematical Society, ISSN 0024-6107, Vol. 82, Nº 1, 2010, págs. 49-73
  • Idioma: inglés
  • DOI: 10.1112/jlms/jdq011
  • Enlaces
  • Resumen
    • We introduce two generalizations of Newton non-degenerate singularities of hypersurfaces.

      Roughly speaking, an isolated hypersurface singularity is called topologically Newton nondegenerate if the local embedded topological singularity type can be restored from a collection of Newton diagrams (for some coordinate choices). A singularity that is not topologically Newton non-degenerate is called essentially Newton degenerate. For plane curves we give an explicit characterization of topologically Newton non-degenerate singularities; for hypersurfaces we provide several examples.

      Next, we treat the question of whether Newton non-degenerate or topologically Newton non-degenerate is a property of singularity types or of particular representatives: namely, is the non-degeneracy preserved in an equisingular family? This result is proved for curves. For hypersurfaces we give an example of a Newton non-degenerate hypersurface whose equisingular deformation consists of essentially Newton degenerate hypersurfaces.

      Finally, we define the directionally Newton non-degenerate germs, a subclass of topologically Newton non-degenerate ones. For such singularities the classical formulas for the Milnor number and the zeta function of the Newton non-degenerate hypersurface are generalized


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno