Ir al contenido

Documat


Simplices of maximum volume contained in the unit ball of a normed space

  • Autores: Marek Lassak
  • Localización: Publicationes Mathematicae Debrecen, ISSN 0033-3883, Tomus 77, Fasc. 1-2, 2010, págs. 79-86
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We prove that if ¢ is a simplex of the maximum possible volume contained in the unit ball of an n-dimensional normed space, then Pn i=0 w¡1 i = n, where wi is the width (in the sense of the norm) of ¢ in the direction perpendicular to the i-th facet of ¢. Moreover, we prove that all the sides of any triangle of the maximum area contained in the unit disk of any 2-dimensional normed plane are of the lengths (in the sense of the norm) at least p 2. This value cannot be increased as is shown by the example of the normed plane whose unit disk is the regular octagon. We also estimate the perimeter (in the sense of the norm) of this triangle.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno