Ir al contenido

Documat


Small-sample inference about variance and its transformations

  • Autores: Nicholas T. Longford
  • Localización: Sort: Statistics and Operations Research Transactions, ISSN 1696-2281, Vol. 34, Nº. 1, 2010, págs. 3-20
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We discuss minimum mean squared error and Bayesian estimation of the variance and its common transformations in the setting of normality and homoscedasticity with small samples, for which asymptotics do not apply. We show that permitting some bias can be rewarded by greatly reduced mean squared error. We apply borderline and equilibrium priors. The purpose of these priors is to reduce the onus on the expert or client to specify a single prior distribution that would capture the information available prior to data inspection. Instead, the (parametric) class of all priors considered is partitioned to subsets that result in the preference for different actions. With the family of conjugate inverse gamma priors, this Bayesian approach can be formulated in the frequentist paradigm, describing the prior as being equivalent to additional observations.

  • Referencias bibliográficas
    • Garthwaite, P. H., Kadane, J. B., and O’Hagan, A. (2005). Statistical methods for eliciting probability distributions. Journal of the American...
    • Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2003). Bayesian Data Analysis, 2nd Ed. Chapman & Hall, CRC, New York.
    • Longford, N. T. (2009). Analysis of all-zero binomial outcomes with borderline and equilibrium priors. Journal of Applied Statistics, 36,...
    • Longford, N. T. (2010). Estimation of the effect size in meta-analysis with few studies. Statistics in Medicine, 29, 421-430.
    • Markowitz, E. (1968). Minimum mean-square-error of estimation of the standard deviation of the normal distribution. The American Statistician,...
    • Stuart A. (1969). Reduced mean-square-error estimation of σp in normal samples. The American Statistician, 23, 27-28.
    • Stuart, A., and Ord, K. (1994). Kendall’s Advanced Theory of Statistics, 6th Ed. Volume I. Distribution Theory. Edward Arnold, London.
    • Sutton, A. J., Jones, D. R., Abrams, K. R., Sheldon, T. A., and Song, F. (2000). Methods for Meta-analysis in Medical Research. Wiley, London,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno