Ir al contenido

Documat


The influence of complemented minimal subgroups on the structure of finite groups

  • Autores: Jiakuan Lu, Shirong Li, Xiuyun Guo
  • Localización: Publicationes Mathematicae Debrecen, ISSN 0033-3883, Tomus 76, Fasc. 3-4, 2010, págs. 481-491
  • Idioma: inglés
  • DOI: 10.5486/pmd.2010.4586
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • A subgroup H of a ¯nite group G is said to be complemented in G if there exists a subgroup K of G such that G = HK and H \ K = 1. In this paper the following theorem is proved: Let G be a ¯nite group and let p be the smallest prime dividing the order of G. Then G is p-nilpotent if and only if every minimal subgroup of P \ GN is complemented in NG(P), where P is a Sylow p-subgroup of G and GN is the nilpotent residual of G. As some applications, some interesting results related with complemented minimal subgroups are obtained.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno