Ir al contenido

Documat


How short might be the longest run in a dynamical coin tossing sequence

  • Autores: Pál Révész
  • Localización: Publicationes Mathematicae Debrecen, ISSN 0033-3883, Tomus 76, Fasc. 3-4, 2010, págs. 347-358
  • Idioma: inglés
  • DOI: 10.5486/pmd.2010.4642
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let X1;X2; : : : denote i.i.d. random bits each taking the values 1 and 0 with respective probabilities 1=2 and 1=2. A well-known theorem of Erd}os and R¶enyi [2] describes the limit distribution of the length of the longest contiguous run of ones in X1;X2; : : : ;Xn as n ! 1. Benjamini et al. ([1] Theorem 1.4) demonstrated the existence of unusual times, provided that the bits undergo equilibrium dynamics in time. In fact they prove that the dynamics produces much longer runs than the original model. In the present paper we study the length of the shortest run in the presence of the dynamics.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno