Ir al contenido

Documat


Convergence of fractional step mimetic finite difference discretizations for semilinear parabolic problems

  • Autores: Andrés Arrarás Ventura, Laura Portero Egea Árbol académico, Juan Carlos Jorge Ulecia Árbol académico
  • Localización: Applied numerical mathematics, ISSN-e 0168-9274, Vol. 60, Nº. 4, 2010, págs. 473-485
  • Idioma: inglés
  • DOI: 10.1016/j.apnum.2009.10.007
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • This paper deals with the numerical solution of semilinear parabolic problems by means of efficient parallel algorithms. We first consider a mimetic finite difference method for the spatial semidiscretization. The connection of this method with an appropriate mixed finite element technique is the key to prove the convergence of the semidiscrete scheme. Next, we propose and analyze the use of a linearly implicit fractional step Runge�Kutta method as time integrator. The choice of suitable operator splittings related to an adequate decomposition of the spatial domain makes it possible to obtain totally discrete schemes that can be easily parallelized. A numerical test is shown to illustrate the theoretical results.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno