Ir al contenido

Documat


A Probabilistic Method for Ranking Refinement in Geographic Information Retrieval

  • Autores: Esaú Villatoro-Tello, R. Omar Chavéz-García, Manuel Montes y Gómez, Luis Villaseñor Pineda, Enrique Sucar
  • Localización: Procesamiento del lenguaje natural, ISSN 1135-5948, Nº. 44, 2010, págs. 123-130
  • Idioma: inglés
  • Enlaces
  • Resumen
    • español

      Resultados recientes en la tarea de Recuperación de Información Geográfica (GIR) indican que los métodos de recuperación de información actuales son efectivos para recuperar documentos relevantes a las consultas geográficas, sin embargo tienen serias dificultades para generar un orden apropiado con los documentos recuperados. Motivado por estos resultados, este trabajo propone un método novedoso para re-ordenar la lista de documentos recuperados por un sistema GIR. El método propuesto está basado en un Campo Aleatorio de Markov (CAM), el cual combina el orden original obtenido por el sistema GIR, la similitud entre documentos, y un enfoque de retroalimentación de relevancia. La combinación de éstas características tiene el propósito de separar los documentos relevantes de los que no lo son y así obtener un orden más apropiado. Se realizaron experimentos con los recursos del foro GeoCLEF. Los resultados obtenidos muestran la viabilidad del método para re-ordenar documentos geográficos y también muestran una mejora en la medida MAP (Mean Average Precision) comparados con el modelo tradicional de espacio vectorial.

    • English

      Recent evaluation results from Geographic Information Retrieval (GIR) indicate that current information retrieval methods are effective to retrieve relevant documents for geographic queries, but they have severe difficulties to generate a pertinent ranking of them. Motivated by these results in this paper we propose a novel method to re-order the list of documents returned by a GIR system. The proposed method is based on a Markov Random Field (MRF)model that combines the original order obtained by the GIR system, the similarity among documents and a relevance feedback approach, all of them with the purpose of separating relevant from irrelevant documents, and thus, obtaining a more appropriate order. Experiments were conducted with resources from the GeoCLEF forum. Obtained results show the feasibility of the method for re-ranking documents in GIR and also depict an improvement in mean average precision (MAP) compared to the traditional vector space model.

  • Referencias bibliográficas
    • Baeza-Yates, R. and B. Ribeiro-Neto. 1999. Modern Information Retrival. Addison Wesley. Borges, K. A., A. H. F. Laender, C. B.
    • Medeiros, and C. A. Davis Jr. 2007. Discovering geographic locations in web pages using urban addresses. In Proceedings of Workshop on Geographic...
    • Cardoso, N., P. Sousa, and M. J. Silva. 2008. The university of lisbon at geoclef 2008. In A Probabilistic Method for Ranking Refinement in...
    • Ch´avez, O., E. Sucar, M. Montes. 2010. Image re-ranking based on relevance feedback combining internal and external similarities. In The...
    • Ferr´es, D. and H. Rodr´ıguez. 2008. Talp at geoclef 2007: Results of a geographical knowledge filtering approach with terrier. In Advances...
    • Garc´ıa-Cumbreras, M. A., J. M. Perea- Ortega, M. Garc´ıa-Vega, and L. A. Ure˜na-
    • L´opez. 2009. Information retrieval with geographical references. relevant documents filtering vs. query expansion. Information Processing...
    • Gill´en, Rocio. 2007. Monolingual and bilingual experiments in geoclef2006. In Evaluation of Multilingual and Multi-modal Information Retrieval:...
    • Grossman, D. A. and O. Frieder. 2004. Information Retrieval, Algorithms and Heuristics. Springer, second edition.
    • Henrich, A. and V. Luedecke. 2007. Characteristics of geographic information needs. In Proceedings of Workshop on Geographic Information Retrieval,...
    • Jones, C. B. and R. S. Prurves. 2008. Geographical information retrieval. International Journal of Geographic Information Science, 22(3):219–228.
    • Larson, Ray R. 2008. Cheshire at geoclef 2008: Text and fusion approaches for gir. In Working notes for the CLEF 2008 Workshop, Aarhus, Denmark,...
    • Larson, R. R., F. Gey, and V. Petras. 2006. Berkeley at geoclef: Logistic regression and fusion for geographic information retrieval. In Accessing...
    • Li, S. 1994. Markov random field models in computer vision. Computer Vision — ECCV ’94, pages 361–370. Mandl, T., P. Carvalho, G. M. Di Nunzio, F....
    • Womser-Hacker. 2008. Geoclef 2008: The clef 2008 cross-language geographic information retrieval track overview. In Evaluating Systems for...
    • Mani, Inderjeet. 2001. Automatic Summarization (Natural Language Processing, 3 (Paper)). John Benjamins PublishingCo, June. Martins, B., N....
    • Andrade, and M. J. Silva. 2007. The university of lisbon at geoclef 2006. In Evaluation of Multilingual and Multi-modal Information Retrieval:...
    • Perea-Ortega, J. M., L. A. Ure˜na, D. Buscaldi, and P. Rosso. 2008. Textmess at geoclef 2008: Result merging with fuzzy borda ranking. In...
    • Villatoro-Tello, E., M. Montes-y-G´omez, and L. Villase˜nor-Pineda. Ranking refinement via relevance feedback in geographic information retrieval....
    • L. Villase˜nor-Pineda. 2008. Inaoe at geoclef 2008: A ranking approach based on sample documents. In Working notes for the CLEF 2008 Workshop,...
    • Wang, Riu and Gunter Neumann. 2008. Ontology-based query construction for geoclef. In Working notes for the CLEF 2008 Workshop, Aarhus, Denmark, September.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno