An equivariant bundle gerbe \`a la Meinrenken over a $G$-manifold $M$ is known to be a special type of $S^1$-gerbe over the differentiable stack $[M/G]$. We prove that the natural morphism relating the Cartan and simplicial models of equivariant cohomology in degree 3 maps the Dixmier-Douady class of an equivariant bundle gerbe \`a la Meinrenken to the Behrend-Xu-Dixmier-Douady class of the corresponding $S^1$-gerbe.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados