Ir al contenido

Documat


Singularities of lagrangian mean curvature flow: monotone case

  • Autores: André Neves
  • Localización: Mathematical research letters, ISSN 1073-2780, Vol. 17, Nº 1, 2010, págs. 109-126
  • Idioma: inglés
  • DOI: 10.4310/mrl.2010.v17.n1.a9
  • Enlaces
  • Resumen
    • We study the formation of singularities for the mean curvature flow of monotone Lagrangians in $\C^n$. More precisely, we show that if singularities happen before a critical time then the tangent flow can be decomposed into a finite union of area-minimizing Lagrangian cones (Slag cones). When $n=2$, we can improve this result by showing that each connected components of the rescaled flow converge to an area-minimizing cone, as opposed to possible non-area minimizing union of Slag cones. In the last section, we give specific examples for which such singularity formation occurs.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno