Ir al contenido

Documat


Raikov completion and the Hartman-Mycielski construction

  • Autores: María Montserrat Bruguera Padró
  • Localización: Houston journal of mathematics, ISSN 0362-1588, Vol. 36, Nº 1, 2010, págs. 157-165
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Hartman and Mycielski proved that every topological group G is topologically isomorphic to a closed subgroup of a connected, locally connected topological group. Analyzing the Hartman--Mycielski construction, one can verify that the group and its Hartman--Mycielski completion share many properties such as metrizability, separability, and omega-narrowness. Further, if G is Abelian, divisible, torsion, or torsion-free, so is its Hartman--Mycielski completion.

      It is easy to see that the Hartman--Mycielski completion of a group is not Raikov complete, except for the trivial case |G| = 1. However, for a metrizable group G, we describe the Raikov completion of a group in terms of known objects of Topological Algebra and Functional Analysis.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno