Ir al contenido

Documat


Harmonic maps defined by the geodesic flow

  • Autores: Mohamed T. K. Abbassi
  • Localización: Houston journal of mathematics, ISSN 0362-1588, Vol. 36, Nº 1, 2010, págs. 69-90
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let (M,g) be a Riemannian manifold. We equip the unit tangent sphere bundle T1 M of (M,g) and its unit tangent sphere bundle Tr T1M of radius r>0 with arbitrary Riemannian g-natural metrics. When (M,g) is two-point homogeneous and both T1 M and T1T1M are equipped with the Sasaki metrics, the geodesic flow vector field is harmonic and determines a harmonic map [E. Boeckx and L. Vanhecke, Harmonic and minimal vector fields on tangent and unit tangent bundles, Diff. Geom. Appl., 13 (2000), 77-93]. We prove that if arbitrary Riemannian g-natural metrics are considered, then the geodesic flow is still a harmonic vector field, and it also defines a harmonic map under some conditions on the g-natural metrics. This permits to exhibit large families of harmonic maps defined in a compact Riemannian manifold and having a target space with a highly nontrivial geometry. In particular, explicit examples are provided on the unit tangent sphere bundle of the sphere S n and the flat torus Tn. Moreover, the geodesic flow being a Killing vector field is characterized in terms of harmonicity of the corresponding map and of properties of the base manifold.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno