Ir al contenido

Documat


When a minimal overring is a going-down domain

  • Autores: David E. Dobbs
  • Localización: Houston journal of mathematics, ISSN 0362-1588, Vol. 36, Nº 1, 2010, págs. 33-42
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let R contained in T be a minimal ring extension of (commutative integral) domains. If R is integrally closed in T, then R is a going-down domain if and only if T is a going-down domain. The preceding assertion can be generalized to the context of weak Baer going-down rings. If R is integrally closed and T is a Prufer domain, then R is a Prufer domain. If T is integral over R and T is a going-down domain, then R is a going-down domain if and only if the extension R contained in T satisfies the going-down property. An example is given of an integral minimal overring extension R contained in T of two-dimensional domains such that T is a going-down (in fact, Prufer) domain and R is a treed domain which is not a going-down domain.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno