Ir al contenido

Documat


Evaluating rates of true and false positives in Bayesian disease mapping

  • Autores: Tomás Goicoa Mangado Árbol académico, Ana Fernández Militino Árbol académico, María Dolores Ugarte Martínez Árbol académico
  • Localización: XXXI Congreso Nacional de Estadística e Investigación Operativa ; V Jornadas de Estadística Pública: Murcia, 10-13 de febrero de 2009 : Libro de Actas, 2009, ISBN 978-84-691-8159-1
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Empirical Bayes (EB) and Fully Bayes (FB) approaches have been used for smoothing rates in disease mapping. However, these techniques are not free from inconveniences as an excess of smoothing might hinder the detection of true high-risk areas. Identifying regions with extreme risks minimizing the misclassi cation of normal areas is a primary goal in epidemiology. The FB approach exploits the posterior distribution of the relative risks de ning Bayesian decision rules to detect raised-risk areas. These rules can not be applied under the EB approach because only point estimates are available. Then, second order correct estimators of the mean squared error (MSE) of the log-relative risk predictor can be used to derive con dence intervals for the relative risks. The aim of this work is to compare both procedures in terms of sensitivity (true positives) and speci city (1-false positives).


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno