Ir al contenido

Documat


A general trimming approach to robust cluster analysis

  • Autores: Luis Angel García Escudero Árbol académico, Alfonso Gordaliza Ramos Árbol académico, Carlos Matrán Bea Árbol académico, Agustín Mayo Iscar Árbol académico
  • Localización: XXX Congreso Nacional de Estadística e Investigación Operativa y de las IV Jornadas de Estadística Pública: actas, 2007, ISBN 978-84-690-7249-3
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We introduce a new method for performing clustering with the aim of ¯tting clusters with di®erent scatters and weights. It is designed by allowing to handle a proportion ® of contaminating data to guarantee the robustness of the method.

      As a characteristic feature, restrictions on the ratio between the maximum and the minimum eigenvalues of the groups scatter matrices are introduced. This makes the problem to be well-de¯ned and guarantees the consistency of the sample solutions to the population ones.

      The method covers a wide range of clustering approaches depending on the strength of the chosen restrictions. The proposal includes an algorithm (the TCLUST method) for approximately solving the sample problem.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno