Ir al contenido

Documat


Las funciones Schur-cóncavas multivariantes y su preservación bajo mixturas

  • Autores: Álvaro Cortínez, Francisco Javier Montero de Juan Árbol académico
  • Localización: XXX Congreso Nacional de Estadística e Investigación Operativa y de las IV Jornadas de Estadística Pública: actas, 2007, ISBN 978-84-690-7249-3
  • Idioma: español
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • La mayorizacion permite comparar vectores aleatorios desde el punto de vista de la coherencia, pues considera comparables solo vectores similares. Las funciones Schur-concavas preservan el orden de mayorizacion. Sin embargo, este orden es muy restrictivo. En este trabajo se propone la utilizacion de la mayo- rizacion debil. En primer lugar se demuestra un teorema de preservacion bajo mixturas de la mayorizacion debil. Por lo tanto, las caractersticas que se pue- dan representar mediante funciones Schur-concava debiles son validas tanto para la distribucion condicionada a cierto parametro, como para la distribucion no condicionada. A continuacion se realiza una extension a matrices formadas por vectores aleatorios, es decir, sistemas multivariantes y multicaractersticos, de- mostrandose un teorema de preservacion de la mayorizacion debil multivariante bajo mixturas. Una aplicacion de esta teorema se presenta en la caracterizacion del envejecimiento multivariante, que permite llegar a los sistemas MIFR como casos particulares en caso de independencia o numero in nito de componentes.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno