Ir al contenido

Documat


A wavelet based sparse grid method for the electronic Schrödinger equation

  • Autores: Michael Griebel, Jan Hamaekers
  • Localización: Proceedings oh the International Congress of Mathematicians: Madrid, August 22-30,2006 : invited lectures / coord. por Marta Sanz Solé Árbol académico, Javier Soria de Diego Árbol académico, Juan Luis Varona Malumbres Árbol académico, Joan Verdera Árbol académico, Vol. 3, 2006, ISBN 978-3-03719-022-7, págs. 1473-1506
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We present a direct discretization of the electronic Schrödinger equation. It is based on one-dimensional Meyer wavelets from which we build an anisotropic multiresolution analysis for general particle spaces by a tensor product construction. We restrict these spaces to the case of antisymmetric functions. To obtain finite-dimensional subspaces we first discuss semidiscretization with respect to the scale parameter by means of sparse grids which relies on mixed regularity and decay properties of the electronic wave functions. We then propose different techniques for a discretization with respect to the position parameter. Furthermore we present the results of our numerical experiments using this new generalized sparse grid methods for Schrödinger�s equation.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno