Ir al contenido

Documat


Pseudorandomness and combinatorial constructions

  • Autores: Luca Trevisan
  • Localización: Proceedings oh the International Congress of Mathematicians: Madrid, August 22-30,2006 : invited lectures / coord. por Marta Sanz Solé Árbol académico, Javier Soria de Diego Árbol académico, Juan Luis Varona Malumbres Árbol académico, Joan Verdera Árbol académico, Vol. 3, 2006, ISBN 978-3-03719-022-7, págs. 1111-1136
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In combinatorics, the probabilistic method is a very powerful tool to prove the existence of combinatorial objects with interesting and useful properties. Explicit constructions of objects with such properties are often very difficult, or unknown. In computer science, probabilistic algorithms are sometimes simpler and more efficient than the best known deterministic algorithms for the same problem.

      Despite this evidence for the power of random choices, the computational theory of pseudorandomness shows that, under certain complexity-theoretic assumptions, every probabilistic algorithm has an efficient deterministic simulation and a large class of applications of the probabilistic method can be converted into explicit constructions.

      In this survey paper we describe connections between the conditional �derandomization� results of the computational theory of pseudorandomness and unconditional explicit constructions of certain combinatorial objects such as error-correcting codes and �randomness extractors.�


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno