Ir al contenido

Documat


Noncommutative counterparts of the Springer resolution

  • Autores: Roman Bezrukavnikov
  • Localización: Proceedings oh the International Congress of Mathematicians: Madrid, August 22-30,2006 : invited lectures / coord. por Marta Sanz Solé Árbol académico, Javier Soria de Diego Árbol académico, Juan Luis Varona Malumbres Árbol académico, Joan Verdera Árbol académico, Vol. 2, 2006, ISBN 978-3-03719-022-7, págs. 1119-1144
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Springer resolution of the set of nilpotent elements in a semisimple Lie algebra plays a central role in geometric representation theory. A new structure on this variety has arisen in several representation theoretic constructions, such as the (local) geometric Langlands duality and modular representation theory. It is also related to some algebro-geometric problems, such as the derived equivalence conjecture and description of T. Bridgeland�s space of stability conditions. The structure can be described as a noncommutative counterpart of the resolution, or as a t-structure on the derived category of the resolution. The intriguing fact that the same t-structure appears in these seemingly disparate subjects has strong technical consequences for modular representation theory.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno