Ronald DeVore
A large portion of computation is concerned with approximating a function u. Typically, there are many ways to proceed with such an approximation leading to a variety of algorithms. We address the question of how we should evaluate such algorithms and compare them. In particular, when can we say that a particular algorithm is optimal or near optimal? We shall base our analysis on the approximation error that is achieved with a given (computational or information) budget n. We shall see that the formulation of optimal algorithms depends to a large extent on the context of the problem. For example, numerically approximating the solution to a PDE is different from approximating a signal or image (for the purposes of compression).
© 2008-2024 Fundación Dialnet · Todos los derechos reservados