Ir al contenido

Documat


Indices óptimos para la detección de atípicos en series temporales multivariantes mediante projection pursuit

  • Autores: Pedro Galeano Árbol académico, Daniel Peña Sánchez de Rivera Árbol académico, Ruey S. Tsay
  • Localización: XXVI Congreso Nacional de Estadística e Investigación Operativa: Úbeda, 6-9 de noviembre de 2001, 2001, ISBN 84-8439-080-2
  • Idioma: español
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Este trabajo presenta un algoritmo iterativo para detectar y tratar datos atípicos en series temporales multivariantes mediante el uso de métodos de Projection Pursuit. Se presentan algunos resultados basados en propiedades de funciones de potencia de contrastes multivariantes y univariantes que demuestran que la búsqueda de combinaciones lineales de los componentes de la serie con ciertas propiedades de optimalidad nos permite detectar atípicos en series multivariantes. Para obtener estas combinaciones lineales, se presentan cuatro índices de proyección en la terminología de Projection Pursuit que son óptimas en el sentido que dichas combinaciones cuentan con la máxima presencia de datos atípicos. Proponemos un procedimiento iterativo basado en estos índices para detectar y estimar atípicos multivariantes. Utilizamos ejemplos de datos reales para demostrar la eficacia del método.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno