Es habitual en bootstrap paramétrico seleccionar un modelo a partir de los datos, y entonces considerarlo como el modelo verdadero. Chatfield (1996) señala que ignorar la variabilidad debida a la selección del modelo es una de las causas fundamentales de que los intervalos de predicción generalmente tengan una cobertura real inferior a la cobertura nominal. En este trabajo, proponemos dos maneras diferentes de introducir el paso de selección de modelos en el algoritmo de remuestreo. Presentamos un estudio de Monte Carlo comparando las propiedades en muestras finitas de los métodos propuestos en el caso de intervalos de predicción.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados