Ir al contenido

Documat


Optimal adaptive computations in the Jaffard algebra and localized frames

  • Autores: Stephan Dahlke, Massimo Fornasier, Karlheinz Gröchenig
  • Localización: Journal of approximation theory, ISSN 0021-9045, Vol. 162, Nº 1, 2010, págs. 153-185
  • Idioma: inglés
  • DOI: 10.1016/j.jat.2009.04.001
  • Enlaces
  • Resumen
    • We study the numerical solution of infinite matrix equations Au D f for a matrix A in the Jaffard algebra.

      These matrices appear naturally via frame discretizations in many applications such as Gabor analysis, sampling theory, and quasi-diagonalization of pseudo-differential operators in the weighted Sj¨ostrand class.

      The proposed algorithm has two main features: firstly, it converges to the solution with quasi-optimal order and complexity with respect to classes of localized vectors; secondly, in addition to `2-convergence, the algorithm converges automatically in some stronger norms of weighted `p-spaces. As an application we approximate the canonical dual frame of a localized frame and show that this approximation is again a frame, and even an atomic decomposition for a class of associated Banach spaces. The main tools are taken from adaptive algorithms, from the theory of localized frames, and the special Banach algebra properties of the Jaffard algebra.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno