Ir al contenido

Documat


On an inequality of Sagher and Zhou concerning Stein's lemma

  • Autores: Marco Annoni, Loukas Grafakos Árbol académico, Petr Honzík
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 60, Fasc. 3, 2009, págs. 296-306
  • Idioma: español
  • DOI: 10.1007/bf03191373
  • Enlaces
  • Resumen
    • We provide two alternative proofs of the following formulation of Stein’s lemma obtained by Sagher and Zhou [6]: there exists a constant A > 0 such that for any measurable setE⊂ [0, 1], |E| ≠ 0, there is an integerN that depends only onE such that for any square-summable real-valued sequence {ck}_k^=0/∞ we have:

      A \cdot \sum\limits_{k > N} {\left| {c_k } \right|} ^2 \leqslant \mathop {sup}\limits_I \mathop {inf}\limits_{a \in \mathbb{R}} \frac{1}{{\left| I \right|}} \int_{I \cap E} {\left| {f(t) - a} \right|^2 } dt, where the supremum is taken over all dyadic intervals I and f(t) = \sum\limits_{k = 0}^\infty {c_k r_k } (t), wherer k denotes thekth Rademacher function. The first proof does not rely on Khintchine’s inequality while the second is succinct and applies to general lacunary Walsh series.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno