Ir al contenido

Documat


Distributions that are convolvable with generalized Poisson kernel of solvable extensions of homogeneous Lie groups

  • Autores: E. Damek, Jacek Dziubanski Árbol académico, Jaming Philippe, Salvador Pérez-Esteva
  • Localización: Mathematica scandinavica, ISSN 0025-5521, Vol. 105, Nº 1, 2009, págs. 31-65
  • Idioma: inglés
  • DOI: 10.7146/math.scand.a-15105
  • Enlaces
  • Resumen
    • In this paper, we characterize the class of distributions on a homogeneous Lie group N that can be extended via Poisson integration to a solvable one-dimensional extension S of N. To do so, we introduce the S′-convolution on N and show that the set of distributions that are S′-convolvable with Poisson kernels is precisely the set of suitably weighted derivatives of L1-functions. Moreover, we show that the S′-convolution of such a distribution with the Poisson kernel is harmonic and has the expected boundary behavior. Finally, we show that such distributions satisfy some global weak-L1 estimates.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno