Ir al contenido

Documat


Ample vector bundles with zero loci having a bielliptic curve section

  • Autores: Hidetoshi Maeda, Antonio Lanteri
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 54, Fasc. 1, 2003, págs. 73-86
  • Idioma: inglés
  • Títulos paralelos:
    • Haces amplios de vectores de loci cero con sección curva bielíptica
  • Enlaces
  • Resumen
    • Let X be a smooth complex projective variety and let $Z \subset X$ be a smooth submanifold of dimension $\geq 2$, which is the zero locus of a section of an ample vector bundle $\mathcal{E}$ of rank dim $X$ - dim $Z \geq 2$ on $X$. Let $H$ be an ample line bundle on $X$ whose restriction $H_Z$ to $Z$ is very ample. Triplets $(X, \mathcal{E}, H)$ as above are studied and classified under the assumption that $Z$ is a projective manifold of high degree with respect to $H_Z$, dmitting a curve section which is a double cover of an elliptic curve.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno