Ir al contenido

Documat


Piecewise harmonic subharmonic functions and positive Cauchy transforms

  • Autores: Julius Borcea, Rikard Bogvad
  • Localización: Pacific journal of mathematics, ISSN 0030-8730, Vol. 240, Nº 2, 2009, págs. 231-265
  • Idioma: inglés
  • DOI: 10.2140/pjm.2009.240.231
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We give a local characterization of the class of functions having positive distributional derivative with respect to z that are almost everywhere equal to one of finitely many analytic functions and satisfy some mild nondegeneracy assumptions. As a consequence, we give conditions that guarantee that any subharmonic piecewise harmonic function coincides locally with the maximum of finitely many harmonic functions and we describe the topology of their level curves. These results are valid in a quite general setting as they assume no à priori conditions on the differentiable structure of the support of the associated Riesz measures. We also discuss applications to positive Cauchy transforms and we consider several examples and related problems.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno