Ir al contenido

Documat


The Chabauty space of closed subgroups of the three-dimensional Heisenberg group

  • Autores: Martin R. Bridson, Pierre de la Harpe, Victor Kleptsyn
  • Localización: Pacific journal of mathematics, ISSN 0030-8730, Vol. 240, Nº 1, 2009, págs. 1-48
  • Idioma: inglés
  • DOI: 10.2140/pjm.2009.240.1
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • When equipped with the natural topology first defined by Chabauty, the closed subgroups of a locally compact group G form a compact space C(G). We analyse the structure of C(G) for some low-dimensional Lie groups, concentrating mostly on the 3-dimensional Heisenberg group H. We prove that C(H) is a 6-dimensional space that is path-connected but not locally connected. The lattices in H form a dense open subset L(H) ?C(H) that is the disjoint union of an infinite sequence of pairwise homeomorphic aspherical manifolds of dimension six, each a torus bundle over (S3 \ T) × R, where T denotes a trefoil knot. The complement of L(H) in C(H) is also described explicitly. The subspace of C(H) consisting of subgroups that contain the centre Z(H) is homeomorphic to the 4-sphere, and we prove that this is a weak retract of C(H).


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno