Ir al contenido

Documat


The 'Harder-Narasimhan trace' and unitarity of the KZ/Hitchin connection: genus 0

  • Autores: Trivandrum Ramakrishnan Ramadas
  • Localización: Annals of mathematics, ISSN 0003-486X, Vol. 169, Nº 1, 2009, págs. 1-39
  • Idioma: inglés
  • DOI: 10.4007/annals.2009.169.1
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let a reductive group G act on a projective variety X+, and suppose given a lift of the action to an ample line bundle ?. By definition, all G-invariant sections of ? vanish on the nonsemistable locus X+nss. Taking an appropriate normal derivative defines a map H0(X+,?)G ? H0(Sµ,Vµ)G, where Vµ is a G-vector bundle on a G-variety Sµ. We call this the Harder-Narasimhan trace. Applying this to the Geometric Invariant Theory construction of the moduli space of parabolic bundles on a curve, we discover generalisations of �Coulomb-gas representations�, which map conformal blocks to hypergeometric local systems. In this paper we prove the unitarity of the KZ/Hitchin connection (in the genus zero, rank two, case) by proving that the above map lands in a unitary factor of the hypergeometric system. (An ingredient in the proof is a lower bound on the degree of polynomials vanishing on partial diagonals.) This elucidates the work of K. Gawedzki.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno