Ir al contenido

Documat


An equivariant index formula in contact geometry

  • Autores: Sean Fitzpatrick
  • Localización: Mathematical research letters, ISSN 1073-2780, Vol. 16, Nº 2-3, 2009, págs. 375-394
  • Idioma: inglés
  • DOI: 10.4310/mrl.2009.v16.n3.a1
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Given an elliptic action of a compact Lie group $G$ on a co-oriented contact manifold $(M,E)$ one obtains two naturally associated objects: A $G$-transversally elliptic operator $\dirac$, and an equivariant differential form with generalized coefficients $\mathcal{J}(E,X)$ defined in terms of a choice of contact form on $M$. We explain how the form $\mathcal{J}(E,X)$ is natural with respect to the contact structure, and give a formula for the equivariant index of $\dirac$ involving $\mathcal{J}(E,X)$. A key tool is the Chern character with compact support developed by Paradan-Vergne \cite{PV1,PV}.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno