Ir al contenido

Documat


The Signature of the Chern Coefficients of Local Rings

  • Autores: Laura Ghezzi, Jooyoun Hong, Wolmer V. Vasconcelos
  • Localización: Mathematical research letters, ISSN 1073-2780, Vol. 16, Nº 2-3, 2009, págs. 279-289
  • Idioma: inglés
  • DOI: 10.4310/mrl.2009.v16.n2.a6
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • This paper considers the following conjecture: If $R$ is an unmixed, equidimensional local ring that is a homomorphic image of a Cohen-Macaulay local ring, then for any ideal $J$ generated by a system of parameters, the Chern coefficient $e_1(J)< 0$ is equivalent to $R$ being non Cohen-Macaulay. The conjecture is established if $R$ is a homomorphic image of a Gorenstein ring, and for all universally catenary integral domains containing fields. Criteria for the detection of Cohen-Macaulayness in equi-generated graded modules are derived.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno