Ir al contenido

Documat


Finite element approximation of Maxwell eigenproblems on curved Lipschitz polyhedral domains

  • Autores: Anahí Dello Russo, Ana Alonso
  • Localización: Applied numerical mathematics, ISSN-e 0168-9274, Vol. 59, Nº. 8, 2009, págs. 1796-1822
  • Idioma: inglés
  • DOI: 10.1016/j.apnum.2009.01.007
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • This paper deals with the finite element approximation of the spectral problem for the Maxwell equation on a curved non-convex Lipschitz polyhedral domain ?. Convergence and optimal order error estimates are proved for the lowest order edge finite element space of Nédélec on a tetrahedral mesh of approximate domains ?hnot a subset of?. These convergence results are based on the discrete compactness property which is proved to hold true also in this case.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno