Ir al contenido

Documat


Coverings of [ MO n ] and minimal orthomodular lattices

  • Autores: J. C. Carréga, Richard J. Greechie
  • Localización: Algebra universalis, ISSN 0002-5240, Vol. 58, Nº. 4, 2008, págs. 427-459
  • Idioma: inglés
  • DOI: 10.1007/s00012-008-2078-9
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • If T is an orthomodular lattice (OML), we denote by [T] the equational class generated by T. In this paper we characterize the finite OMLs T such that [T] covers some [MO n ]. These OMLs T are the non-modular OMLs such that all proper sub-OMLs of T are modular. An OML satisfying that last property is called minimal. There exist infinitely many minimal OMLs provided by quadratic spaces over finite fields. We describe them and give a new way to represent their Greechie diagrams in two separate parts. Other methods to obtain finite minimal OMLs are given.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno