Ir al contenido

Documat


The {ie210-01}-property in finite simple groups

  • Autores: D. O. Revin
  • Localización: Algebra and logic, ISSN 0002-5232, Vol. 47, Nº. 3, 2008, págs. 210-227
  • Idioma: inglés
  • DOI: 10.1007/s10469-008-9010-4
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let ? be some set of primes. A finite group is said to possess the {ie210-02}-property if all of its maximal ?-subgroups are conjugate. It is not hard to show that this property is equivalent to satisfaction of the complete analog of Sylow's theorem for Hall ?-subgroups of a group. In the paper, we bring to a close an arithmetic description of finite simple groups with the {ie210-03}-property, for any set ? of primes. Previously, it was proved that a finite group possesses the {ie210-04}-property iff each composition factor of the group has this property. Therefore, the results obtained mean in fact that the question of whether a given group enjoys the {ie210-05}-property becomes purely arithmetic.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno