Two groups are said to be isospectral if they share the same set of element orders. For every finite simple linear group L of dimension n over an arbitrary field of characteristic 2, we prove that any finite group G isospectral to L is isomorphic to an automorphic extension of L. An explicit formula is derived for the number of isomorphism classes of finite groups that are isospectral to L. This account is a continuation of the second author's previous paper where a similar result was established for finite simple linear groups L in a sufficiently large dimension (n > 26), and so here we confine ourselves to groups of dimension at most 26.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados