Ir al contenido

Documat


Asymptotic Approximations between the Hahn-Type Polynomials and Hermite, Laguerre and Charlier Polynomials

  • Autores: Chelo Ferreira González Árbol académico, José Luis López García Árbol académico, Pedro Pagola Martínez Árbol académico
  • Localización: Acta applicandae mathematicae, ISSN 0167-8019, Vol. 103, Nº. 3, 2008, págs. 235-252
  • Idioma: inglés
  • DOI: 10.1007/s10440-008-9233-3
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • It has been shown in Ferreira et al. (Adv. Appl. Math 31:61�85, [2003]), López and Temme (Methods Appl. Anal. 6:131�196, [1999]; J. Cpmput. Appl. Math. 133:623�633, [2001]) that the three lower levels of the Askey table of hypergeometric orthogonal polynomials are connected by means of asymptotic expansions. In this paper we continue with that investigation and establish asymptotic connections between the fourth level and the two lower levels: we derive twelve asymptotic expansions of the Hahn, dual Hahn, continuous Hahn and continuous dual Hahn polynomials in terms of Hermite, Charlier and Laguerre polynomials. From these expansions, several limits between polynomials are derived. Some numerical experiments give an idea about the accuracy of the approximations and, in particular, about the accuracy in the approximation of the zeros of the Hahn, dual Hahn, continuous Hahn and continuous dual Hahn polynomials in terms of the zeros of the Hermite, Charlier and Laguerre polynomials.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno