Ir al contenido

Documat


Symmetries and First Integrals of Differential Equations

  • Autores: Jing Zhang, Yong Li
  • Localización: Acta applicandae mathematicae, ISSN 0167-8019, Vol. 103, Nº. 2, 2008, págs. 147-159
  • Idioma: inglés
  • DOI: 10.1007/s10440-008-9226-2
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • It is known that an n-dimensional system of ordinary differential equations with Lie symmetry which involves a divergence-free Liouville vector field possesses n-1 independent first integrals (i.e., it is algebraically integrable) (Ünal in Phys. Lett. A 260:352�359, [1999]). In the present paper, we show that if an n-dimensional system of ordinary differential equations admits a C ?-symmetry vector field which satisfies some special conditions, then it also possesses n-1 independent first integrals. Several examples are given to illustrate our result.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno