Ir al contenido

Documat


A preferential attachment model with random initial degrees

  • Autores: Maria Deijfen, Henri van den Esker, Remco van der Hofstad, Gerard Hooghiemstra
  • Localización: Arkiv för matematik, ISSN 0004-2080, Vol. 47, Nº 1, 2009, págs. 41-72
  • Idioma: inglés
  • DOI: 10.1007/s11512-007-0067-4
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In this paper, a random graph process {G(t)}t.1 is studied and its degree sequence is analyzed. Let {Wt}t.1 be an i.i.d. sequence. The graph process is defined so that, at each integer time t, a new vertex with Wt edges attached to it, is added to the graph. The new edges added at time t are then preferentially connected to older vertices, i.e., conditionally on G(t.1), the probability that a given edge of vertex t is connected to vertex i is proportional to di(t.1)+¿Â, where di(t.1) is the degree of vertex i at time t.1, independently of the other edges.

      The main result is that the asymptotical degree sequence for this process is a power law with exponent T=min{TW, TP}, where TW is the power-law exponent of the initial degrees {Wt}t.1 and TP the exponent predicted by pure preferential attachment. This result extends previous work by Cooper and Frieze.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno