Ir al contenido

Documat


Cyclicity in the Dirichlet space

  • Autores: Omar El-Fallah, Karim Kellay, Thomas Ransford
  • Localización: Arkiv för matematik, ISSN 0004-2080, Vol. 44, Nº 1, 2006, págs. 61-86
  • Idioma: inglés
  • DOI: 10.1007/s11512-005-0008-z
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let D be the Dirichlet space, namely the space of holomorphic functions on the unit disk whose derivative is square-integrable. We give a new sufficient condition, not far from the known necessary condition, for a function f�¸D to be cyclic, i.e. for {pf :p is a polynomial} to be dense in D.

      The proof is based on the notion of Bergman.Smirnov exceptional set introduced by Hedenmalm and Shields. Our methods yield the first known examples of such sets that are uncountable.

      One of the principal ingredients of the proof is a new converse to the strong-type inequality for capacity.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno