John Andersson, Norayr Matevosyan, Hayk Mikayelyan
In this paper we consider the following two-phase obstacle-problem-like equation in the unit half-ball Äu=ë+÷{u>0}.ë.÷{u<0}, ë± >0.
We prove that the free boundary touches the fixed boundary (uniformly) tangentially if the boundary data f and its first and second derivatives vanish at the touch-point.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados