Ir al contenido

Documat


Weak convergence theorems for a countable family of Lipschitzian mappings

  • Autores: Weerayuth Nilsrakoo, Satit Saejung
  • Localización: Journal of computational and applied mathematics, ISSN 0377-0427, Vol. 230, Nº 2, 2009, págs. 451-462
  • Idioma: inglés
  • DOI: 10.1016/j.cam.2008.12.013
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • This paper is concerned with convergence of an approximating common fixed point sequence of countable Lipschitzian mappings in a uniformly convex Banach space. We also establish weak convergence theorems for finding a common element of the set of fixed points, the set of solutions of an equilibrium problem, and the set of solutions of a variational inequality. With an appropriate setting, we obtain and improve the corresponding results recently proved by Moudafi [A. Moudafi, Weak convergence theorems for nonexpansive mappings and equilibrium problems. J. Nonlinear Convex Anal. 9 (2008) 37�43], Tada�Takahashi [A. Tada and W. Takahashi, Weak and strong convergence theorems for a nonexpansive mapping and an equilibrium problem. J. Optim. Theory Appl. 133 (2007) 359�370], and Plubtieng�Kumam [S. Plubtieng and P. Kumam, Weak convergence theorem for monotone mappings and a countable family of nonexpansive mappings. J. Comput. Appl. Math. (2008) doi:10.1016/j.cam.2008.05.045]. Some of our results are established with weaker assumptions.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno