Ir al contenido

Documat


Variable-stepsize Chebyshev-type methods for the integration of second-order IVP's

  • Autores: Higinio Ramos Calle Árbol académico, Jesús Vigo-Aguiar Árbol académico
  • Localización: Journal of computational and applied mathematics, ISSN 0377-0427, Vol. 204, Nº 1, 2007, págs. 102-113
  • Idioma: inglés
  • DOI: 10.1016/j.cam.2006.04.032
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Panovsky and Richardson [A family of implicit Chebyshev methods for the numerical integration of second-order differential equations, J. Comput. Appl. Math. 23 (1988) 35�51] presented a method based on Chebyshev approximations for numerically solving the problem y?=f(x,y), being the steplength constant. Coleman and Booth [Analysis of a Family of Chebyshev Methods for y?=f(x,y), J. Comput. Appl. Math. 44 (1992) 95�114] made an analysis of the above method and suggested the convenience to design a variable steplength implementation. As far as we know this goal has not been achieved until now. Later on we extended the above method (this journal, 2003), and obtained a scheme for numerically solving the equation y?-2gy'+(g2+w2)=f(x,y). The question of how to extend these formulas to variable stepsize procedures is the primary topic of this paper.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno