Ir al contenido

Documat


Gaussian integer points of analytic functions in a half-plane

  • Autores: Alastair Fletcher
  • Localización: Mathematical proceedings of the Cambridge Philosophical Society, ISSN 0305-0041, Vol. 145, Nº 2, 2008, págs. 257-272
  • Idioma: inglés
  • DOI: 10.1017/s0305004108001643
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • A classical result of Pólya states that 2z is the slowest growing transcendental entire function taking integer values on the non-negative integers. Langley generalised this result to show that 2z is the slowest growing transcendental function in the closed right half-plane O = {z : Re(z) = 0} taking integer values on the non-negative integers. Let E be a subset of the Gaussian integers in the open right half-plane with positive lower density and let f be an analytic function in O taking values in the Gaussian integers on E. Then in this paper we prove that if f does not grow too rapidly, then f must be a polynomial. More precisely, there exists L > 0 such that if either the order of growth of f is less than 2 or the order of growth is 2 and the type is less than L, then f is a polynomial.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno